Низковольтные преобразователи напряжения для светодиодов. Несколько простых схем питания светодиодов Стабилизатор напряжения для светодиодного фонаря

Почти все автомобилисты знакомы с такой проблемой, как быстрый выход из строя светодиодных ламп. Которые зачастую ставятся в габаритные огни, дневные ходовые огни (ДХО) или в другие фонари.
Как правило эти светодиодные лампы имеют малую мощность и ток потребления. Чем собственно говоря и обусловлен их выбор.
Сам по себе светодиод запросто служит в оптимальных условиях более 50000 часов, но в автомобиле, особенно в отечественном, его не хватает порой и на месяц. Сначала светодиод начинает мерцать, а затем и вообще перегорает.

Чем это объясняется?

Производитель ламп пишет маркировку «12V». Это оптимальное напряжение, при котором светодиоды в лампе работают почти на максимуме. И если подать на эту лампу 12 В, то она прослужит на максимальной яркости очень долгое время.
Так почему же она перегорает в автомобиле? Изначально напряжение бортовой сети автомобиля – 12,6 В. Уже видно завышение от 12. А напряжение сети заведенного автомобиля может доходить до 14,5 В. Добавим ко всему этому различные скачки от переключения мощных ламп дальнего или ближнего света, мощные импульсы по напряжению и магнитные наводки при пуске двигателя от стартера. И получим не самую лучшую сеть для питания светодиодов, которые в отличии от ламп накаливания, очень чувствительны ко всем перепадам.
Так как зачастую в простеньких китайских лампах нет никаких ограничивающих элементов, кроме резистора – лампа выходит из строя от перенапряжения.
За свою практику я менял десятки таких ламп. Большая часть из них не служила и года. В конечном итоге я устал и решил поискать выход попроще.

Простой стабилизатор напряжения для светодиодов

Чтобы обеспечить комфортную эксплуатацию для светодиодов я решил сделать простой стабилизатор. Абсолютно не сложный, его сможет повторить любой автомобилист.
Все что нам понадобиться:
  • - кусок текстолита для платы,
Вроде все. Вся комплектация стоит копейки на Али экспресс – ссылки в списке.

Схема стабилизатора


Схема взята из даташита на микросхему L7805.


Все просто – слева вход, справа – выход. Такой стабилизатор может выдержать до 1,5 А нагрузки, при условии что будет установлен на радиатор. Естественно для маленьких лампочек никакого радиатора не нужно.

Сборка стабилизатора для светодиодов

Все что нужно это вырезать из текстолита нужный кусочек. Травить дорожки не нужно – я вырезал простые лини обычной отверткой.
Припаиваем все элементы и все готово. В настройке не нуждается.



В роли корпуса служит термообдувка.
Плюс схемы ещё в том, что в роли радиатора модно использовать кузов автомобиля, так как центральный вывод корпуса микросхемы соединен с минусом.


На этом все, светодиоды больше не выгорают. Езжу больше года и о данной проблеме забыл, чего советую и вам.

Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, ). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно .

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и R set .

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора R sens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

Мощность, рассеиваемая на резисторе равна:

Регулируемый стабилизатор

Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Какой стабилизатор использовать в авто

Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, ). Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема .

Вывод

Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.

Давно присматривался к этим микросхемам. Очень часто что-нибудь паяю. Решил взять их для творчества. Эти микросхемы куплены ещё в прошлом году. Но до применения их в деле так и не доходило. Но не так давно моя мать дала мне на починку свой фонарик, купленный в офлайне. На нём и потренировался.
В заказе было 10 микросхем, 10 и пришло.


Оплатил 17 ноября, получил 19 декабря. Пришли в стандартном пупырчатом пакетике. Внутри ещё пакетик. Шли без трека. Был удивлён, когда обнаружил их в почтовом ящике. Даже на почту идти не пришлось.


Не ожидал, что они настолько маленькие.

Микросхемы заказывал для других целей. Планами делиться не буду. Надеюсь, что у меня найдётся время воплотить их в жизнь (планы). Ну а пока немного другая история, приближенная к жизни.
Моя маман, гуляя по магазинам, увидела фонарик с хорошей скидкой. Что больше ей понравилось фонарик или скидка, история умалчивает. Этот фонарик вскоре стал и моей головной болью. Попользовалась она им не более полугода. Полгода проблемы, то одно, то другое. Я купил ей на место этого штуки три других. Но делать всё равно пришлось.


Фонарик хоть из недорогих, но имеет ряд существенных достоинств: в руке лежит удобно, достаточно яркий и кнопочка в привычном месте, алюминиевый корпус.
Ну а теперь о недостатках.
Питается фонарик от четырёх пальчиковых элементов типа ААА.


Поставил батарейки все четыре штуки. Измерил ток потребления – более 1А! Схема простая. Элементы питания, кнопка, ограничительный резистор на 1,0 Ом, светодиод. Всё последовательно. Ток ограничивается только сопротивлением 1,0 Ом и внутренним сопротивлением элементов питания.
Вот, что имеем в итоге.


Странно, что безымянный светодиод оказался живым.


Первым, что сделал – изготовил пустышку из старой батарейки.


Теперь будет питаться от 4,5В, как все китайские фонарики в основной своей массе.
И самое основное, вместо сопротивления поставлю драйвер AMC7135.
Вот стандартная схема его подключения.

Для этой микросхемы требуется минимум обвязки. Из дополнительных компонентов желательно установить пару керамических конденсаторов, что бы не было самовозбуждения микросхемы, особенно если к светодиоду идут длинные провода. В даташите есть вся необходимая информация. В фонарике длинных проводов нет, поэтому конденсаторов я в реальности не ставил, хотя в схеме обозначил. Вот моя схема, переработанная под конкретные задачи.


В данной схеме через кнопку-выключатель большой ток больше не будет течь в принципе. Через кнопку протекает только ток управления и всё. Ещё одной проблемой меньше.


Кнопку я тоже перебрал и смазал на всякий случай.

Вместо сопротивления теперь стоит микросхема с током стабилизации 360мА.


Всё собрал на место и измерил ток. Подключал и батарейки и аккумуляторы, картина не меняется. Ток стабилизации не меняется.


Слева – напряжение на светодиоде, справа – ток, через него протекающий.
Что же я добился в результате всех переделок?
1. Яркость фонаря практически не меняется при эксплуатации.
2. Разгрузил кнопку включения-выключения фонаря. Теперь через неё протекает мизерный ток. Порча контактов из-за большого тока исключена.
3. Защитил светодиод от деградации из-за большого протекающего тока (если с новыми батарейками).
Вот, в общем, и всё.
Как правильно распорядиться сведениями из моего обзора каждый решает сам. Я же могу гарантировать правдивость своих измерений. Кому что-то неясно по поводу этого обзора, задавайте вопросы. С остальным – кидайте в личку, обязательно отвечу.
На этом ВСЁ!
Удачи!

И ещё хотел бы обратить внимание на тот факт, что у моего фонарика выключатель стоит на плюсе. У многих китайских фонариков выключатель стоит на минусе, а это будет уже другая схема!

Планирую купить +60 Добавить в избранное Обзор понравился +58 +118

Светодиоды, как источники оптического излучения, имеют неоспоримые достоинства: малые габариты, высокую яркость свечения при минимальном (единицы мА) токе, экономичность.

Но в силу технологических особенностей они не могут светиться при напряжении ниже 1,6... 1,8 В. Это обстоятельство резко ограничивает возможность применения светодиодных излучателей в широком классе устройств, имеющих низковольтное питание, обычно от одного гальванического элемента.

Несмотря на очевидную актуальность проблемы низковольтного питания светодиодных источников оптического излучения, известно весьма ограниченное число схемных решений, в которых авторы пытались решить эту задачу.

В этой связи ниже приведен обзор схем питания светодиодов от источника низкого (0,25...1,6 В) напряжения. Многообразие схем, приведенных в этой главе, можно свести к двум основным разновидностям преобразования напряжения низкого уровня в высокое. Это схемы с емкостными и индуктивными накопителями энергии [Рк 5/00-23].

Удвоитель напряжения

На рисунке 1 показана схема питания светодиода с использованием принципа удвоения напряжения питания. Генератор низкочастотных импульсов выполнен на транзисторах разной структуры: КТ361 и КТ315.

Частота следования импульсов определяется постоянной времени R1C1, а продолжительность импульсов — постоянной времени R2C1. С выхода генератора короткие импульсы через резистор R4 подаются на базу транзистора VT3, в коллекторную цепь которого включен светодиод HL1 (АЛ307КМ) красного цвета свечения и германиевый диод VD1 типа Д9.

Между выходом генератора импульсов и точкой соединения светодиода с германиевым диодом подключен электролитический конденсатор С2 большой емкости.

В период продолжительной паузы между импульсами (транзистор VT2 закрыт и не проводит ток) этот конденсатор заряжается через диод VD1 и резистор R3 до напряжения источника питания. При генерации короткого импульса транзистор VT2

открывается. Отрицательно заряженная обкладка конденсатора С2 оказывается соединенной с положительной шиной питания. Диод VD1 запирается. Заряженный конденсатор С2 оказывается подключенным последовательно с источником питания.

Суммарное напряжение приложено к цепи светодиод — переход эмиттер — коллектор транзистора VT3. Поскольку тем же импульсом транзистор VT3 отпирается, его сопротивление эмиттер — коллектор становится малым.

Таким образом, практически удвоенное напряжение питания (исключая незначительные потери) оказывается кратковременно приложенным к светодиоду: следует его яркая вспышка. После этого процесс заряда — разряда конденсатора С2 периодически повторяется.

Рис. 1. Принципиальная схема удвоителя напряжения для питания светодиода.

Поскольку светодиоды допускают работу при кратковременном токе в импульсе, в десятки раз превосходящем номинальные значения, повреждения светодиода не происходит.

Если необходимо повысить надежность работы светодиодных излучателей с низковольтным питанием и расширить диапазон напряжения питания в сторону увеличения, последовательно со светодиодом следует включить токоограничи-вающий резистор сопротивлением десятки, сотни Ом.

При использовании светодиода типа АЛ307КМ с напряжением начала едва заметного свечения 1,35... 1,4 В и напряжением, при котором без ограничительного сопротивления ток через светодиод составляет 20 мА, 1,6... 1,7 В, рабочее напряжение генератора, представленного на рисунке 1, составляет 0,8... 1,6 В.

Границы диапазона определены экспериментально тем же образом: нижняя указывает напряжение начала свечения светодиода, верхняя — напряжение, при котором ток, потребляемый всем устройством, составляет примерно 20 мА, т.е. не превышает в самых неблагоприятных условиях эксплуатации предельный ток через светодиод и, одновременно, сам преобразователь.

Как уже отмечалось ранее, генератор (рисунок 1) работает в импульсном режиме, что является с одной стороны недостатком схемы, с другой стороны — достоинством, поскольку позволяет генерировать яркие вспышки света, привлекающие внимание.

Генератор достаточно экономичен, поскольку средний ток, потребляемый устройством, невелик. В то же время в схеме необходимо использовать хотя и низковольтный, но довольно громоздкий электролитический конденсатор большой емкости (С2).

Упрощенный вариант преобразователя напряжения

На рисунке 2 показан упрощенный вариант генератора, работающего аналогично изложенному выше. Генератор, используя малогабаритный электролитический конденсатор, работает при напряжении питания от 0,9 до 1,6 В.

Средний ток, потребляемый устройством, не превышает 3 мА при частоте следования импульсов около 2 Гц. Яркость генерируемых вспышек света несколько ниже, чем в предыдущей схеме.

Рис. 2. Схема простого низковольтного преобразователя напряжения на двух транзисторах из 0,9В в 2В.

Генератор с применением телефонного капсюля

Генератор, показанный на рис. 9.3, использует в качестве нагрузки телефонный капсюль ТК-67. Это позволяет повысить амплитуду генерируемых импульсов и понизить тем самым на 200 мВ нижнюю границу начала работы генератора.

За счет перехода на более высокую частоту генерации удается осуществить непрерывную «перекачку» (преобразование) энергии и ощутимо снизить емкости конденсаторов.

Рис. 3. Схема низковольтного генератора преобразователя напряжения с использованием катушки телефона.

Генератор с удвоением напряжения на выоде

На рисунке 4 показан генератор с выходным каскадом, в котором осуществляется удвоение выходного напряжения. При закрытом транзисторе VT3 к светодиоду приложено только небольшое по величине напряжение питания.

Электрическое сопротивление светодиода велико в силу ярко выраженной нелинейности ВАХ и намного превышает сопротивление резистора R6. Поэтому конденсатор С2 оказывается подключенным к источнику питания через резисторы R5 и R6.

Рис. 4. Схема низковольтного преобразователя с удвоением выходного напряжения.

Хотя вместо германиевого диода использован резистор R6, принцип работы удвоителя напряжения остается тем же: заряд конденсатора С2 при закрытом транзисторе VT3 через резисторы R5 и R6 с последующим подключением заряженного конденсатора последовательно с источником питания.

При приложении удвоенного таким образом напряжения динамическое сопротивление светодиода на более крутом участке ВАХ становится на время разряда конденсатора порядка 100 Ом и менее, что намного ниже сопротивления шунтирующего конденсатор резистора R6.

Расширить рабочий диапазон питающих напряжений (от 0,8 до 6 В) позволяет использование резистора R6 вместо германиевого диода. Если бы в схеме стоял германиевый диод, напряжение питания устройства было бы ограничено величиной 1,6...1,8 В.

При дальнейшем увеличении напряжения питания ток через светодиод и германиевый диод вырос бы до неприемлемо высокой величины и произошло бы их необратимое повреждение.

Преобразователь на основе генератора ЗЧ

В генераторе, представленном на рисунке 5 одновременно со световыми вырабатываются звонкие импульсы звуковой частоты. Частота звуковых сигналов определяется параметрами колебательного контура, образованного обмоткой телефонного капсюля и конденсатора С2.

Рис. 5. Принципиальная схема преобразователя напряжения для светодиода на основе генератора ЗЧ.

Преобразователи напряжения на основе мультивибраторов

Источники питания светодиодов на основе мультивибраторов изображены на рисунках 6 и 7. Первая схема выполнена на основе асимметричного мультивибратора, вырабатывающего, как и устройства (рис. 1 — 5), короткие импульсы с протяженной междуимпульсной паузой.

Рис. 6. Низковольтный преобразователь напряжения на основе асимметричного мультивибратора.

Накопитель энергии — электролитический конденсатор СЗ периодически заряжается от источника питания и разряжается на светодиод, суммируя свое напряжение с напряжением питания.

В отличие от предыдущей схемы генератор (рис. 7) обеспечивает непрерывный характер свечения светодиода. Устройство выполнено на основе симметричного мультивибратора и работает на повышенных частотах.

Рис. 7. Преобразователь для питания светодиода от низковольтного источника 0,8 - 1,6В.

В этой связи емкости конденсаторов в этой схеме на 3...4 порядка ниже. В то же время яркость свечения заметно понижена, а средний ток, потребляемый генератором при напряжении источника питания 1,5 6 не превышает 3 мА.

Преобразователи напряжения с последовательным соединением транзисторов

Рис. 8. Преобразователь напряжения с последовательным соединением транзисторов разного типа проводимости.

В генераторах, показанных далее на рисунках 8 — 13, в качестве активного элемента используется несколько необычное последовательное соединение транзисторов разного типа проводимости, к тому же, охваченных положительной обратной связью.

Рис. 9. Двухтранзисторный преобразователь напряжения для светодиода с применением катушки от телефона.

Конденсатор положительной обратной связи (рисунок 8) одновременно выполняет роль накопителя энергии для получения напряжения, достаточного для питания светодиода.

Параллельно переходу база — коллектор транзистора VT2 (типа КТ361) включен германиевый диод (либо заменяющее его сопротивление, рис. 12).

В генераторе с RC-цепочкой (рис. 8) за счет существенных потерь напряжения на полупроводниковых переходах рабочее напряжение устройства составляет 1,1... 1,6 В.

Заметно понизить нижнюю границу напряжения питания стало возможным за счет перехода на LC-вариант схемы генераторов, использующих индуктивные накопители энергии (рис. 9 — 13).

Рис. 10. Схема простого низковольтного преобразователя напряжения 0,75В -1,5В в 2В на основе LC-генератора.

В качестве индуктивного накопителя энергии в первой из схем использован телефонный капсюль (рис. 9). Одновременно со световыми вспышками генератор вырабатывает акустические сигналы.

При увеличении емкости конденсатора до 200 мкФ генератор переходит в импульсный экономичный режим работы, вырабатывая прерывистые световые и звуковые сигналы.

Переход на более высокие рабочие частоты возможен за счет использования малогабаритной катушки индуктивности с большой добротностью. В связи с этим появляется возможность заметно уменьшить объем устройства и понизить нижнюю границу питающего напряжения (рис. 10 — 13).

В качестве индуктивности использована катушка контура промежуточной частоты от радиоприемника «ВЭФ» индуктивностью 260 мкГн. На рис. 11, 12 показаны разновидности таких генераторов.

Рис. 11. Схема низковольтного преобразователя напряжения для светодиода с катушкой от ПЧ-контура приемника.

Рис. 12. Схема простого преобразователя напряжения для светодиода с катушкой от ПЧ-контура приемника.

Наконец, на рисунке 13 показан наиболее упрощенный вариант устройства, в котором вместо конденсатора колебательного контура использован светодиод.

Преобразователи напряжения конденсаторного типа (с удвоением напряжения), используемые для питания светодиодных излучателей, теоретически могут обеспечить снижение рабочего напряжения питания только до 60% (предельное, идеальное значение — 50%).

Рис. 13. Очень простой низковольтный преобразователь напряжения с включенным светодиодом вместо конденсатора.

Использование в этих целях многокаскадных умножителей напряжения неперспективно в связи с прогрессивно возрастающими потерями и падением КПД преобразователя.

Преобразователи с индуктивными накопителями энергии более перспективны при дальнейшем снижении рабочего напряжения генераторов, обеспечивающих работу светодиодов. При этом сохраняются высокий КПД и простота схемы преобразователя.

Преобразователи напряжения индуктивного и индуктивно-емкостного типа

На рисунках 14 — 18 показаны преобразователи для питания светодиодов индуктивного и индуктивно-емкостного типа, выполненные на основе генераторов с использованием в качестве активного элемента аналогов инжекционно-полевого транзистора [Рк 5/00-23].

Рис. 14. Схема низковольтного преобразователя напряжения 1-6В в 2В индуктивно-емкостного типа.

Преобразователь, изображенный на рисунке 14, является устройством индуктивно-емкостного типа. Генератор импульсов выполнен на аналоге инжекционно-полевого транзистора (транзисторы VT1 и VT2).

Элементами, определяющими рабочую частоту генерации в диапазоне звуковых частот, являются телефонный капсюль BF1 (типа ТК-67), конденсатор С1 и резистор R1. Короткие импульсы, вырабатываемые генератором, поступают на базу транзистора VT3, открывая его.

Одновременно происходит заряд/разряд емкостного накопи 1еля энергии (конденсатор С2). При поступлении импульса положительно заряженная обкладка конденсатора С2 оказывается соединенной с общей шиной через открытый на время действия импульса транзистор VT2. Диод VD1 закрывается, транзистор VT3 — открыт.

Таким образом, к цепи нагрузки (светодиоду HL1) оказываются присоединены последовательно включенные источник питания и заряженный конденсатор С2, в результате чего следует яркая вспышка светодиода.

Расширить диапазон рабочих напряжений преобразователя позволяет транзистор VT3. Устройство работоспособно при напряжениях от 1,0 до 6,0 В. Напомним, что нижняя граница соответствует едва заметному свечению светодиода, а верхняя — потреблению устройством тока в 20 мА.

В области малых напряжений (до 1,45 В) звуковая генерация не слышна, хотя по мере последующего увеличения напряжения питания устройство начинает вырабатывать и звуковые сигналы, частота которых довольно быстро понижается.

Переход на более высокие рабочие частоты (рис. 15) за счет использования высокочастотной катушки позволяет уменьшить емкость конденсатора, «перекачивающего» энергию (конденсатор С1).

Рис. 15. Принципиальная схема низковольтного преобразователя напряжения с ВЧ-генератором.

В качестве ключевого элемента, подключающего светодиод к «плюсовой» шине питания на период следования импульса, использован полевой транзистор VT3 (КП103Г). В результате диапазон рабочих напряжений этого преобразователя расширен до 0,7... 10 В.

Заметно упрощенные, но работающие в ограниченном интервале питающих напряжений устройства показаны на рисунках 16 и 17. Они обеспечивают свечение светодиодов в диапазоне 0,7...1,5 В (при R1=680 Ом) и 0,69...1,2 В (при R1=0 Ом), а также от 0,68 до 0,82 В (рис. 17).

Рис. 16. Принципиальная схема упрощенного низковольтного преобразователя напряжения с ВЧ-генератором.

Рис. 17. Упрощенный низковольтный преобразователь напряжения с ВЧ-генератором и телефонным капсюлем в качестве катушки.

Наиболее прост генератор на аналоге инжекционно-полевого транзистора (рис. 18), где светодиод одновременно выполняет роль конденсатора и является нагрузкой генератора. Устройство работает в довольно узком диапазоне питающих напряжений, однако яркость свечения светодиода достаточно высока, поскольку преобразователь (рис. 18) является чисто индуктивным и имеет высокий КПД.

Рис. 18. Низковольтный преобразователь напряжения с генератором на аналоге инжекционно-полевого транзистора.

Следующий вид преобразователей достаточно хорошо известен и является более традиционным. Это преобразователи трансформаторного и автотрансформаторного типа.

На рис. 19 показан генератор трансформаторного типа для питания светодиодов низковольтным напряжением. Генератор содержит лишь три элемента, одним из которых является светоизлучающий диод.

Без светодиода устройство является простейшим блокинг-генератором, причем на выходе трансформатора может быть получено довольно высокое напряжение. Если в качестве нагрузки генератора использовать светодиод, он начинает ярко светиться даже при низком значении питающего напряжения (0,6...0,75 В).

Рис. 19. Схема преобразователя трансформаторного типа для питания светодиодов низковольтным напряжением.

В этой схеме (рис. 19) обмотки трансформатора имеют по 20 витков провода ПЭВ 0.23. В качестве сердечника трансформатора использовано ферритовое кольцо М1000 (1000НМ) К 10x6x2,5. В случае отсутствия генерации выводы одной из обмоток трансформатора следуе! поменять местами.

Преобразователь, показанный на рисунке 20, имеет самое низкое напряжение питания из всех рассмотренных устройств. Существенного понижения нижней границы рабочего напряжения удалось достичь за счет оптимизации выбора числа (соотношения) витков обмоток и способа их включения. При использовании высокочастотных германиевых транзисторов типа 1Т311, 1Т313 (ГТ311, ГТ313) подобные преобразователи начинают работать пои напояжении питания выше 125 мВ.

Рис. 20. Низковольтный преобразователь напряжения из 0,25В - 0,6В в 2В.

Рис. 21. Экспериментально измеренные характеристики генератора.

В качестве сердечника трансформатора, как и в предыдущей схеме, использовано ферритовое кольцо М1000 (1000НМ) К10x6x2,5. Первичная обмотка выполнена проводом ПЭВ 0,23 мм, вторичная — ПЭВ 0,33. Довольно яркое свечение светодиода наблюдается уже при напряжении 0,3 В.

На рисунке 21 представлены экспериментально измеренные характеристики генератора (рис. 20) при варьировании числа витков обмоток. Из анализа полученных зависимостей следует, что существует область оптимального соотношения числа витков первичной и вторичной обмоток, причем, с увеличением числа витков первичной обмотки минимальное рабочее напряжение преобразователя плавно снижается, причем одновременно сужается и диапазон рабочих напряжений преобразователя.

Для решения обратной задачи — расширения диапазона рабочих напряжений преобразователя — последовательно с ним может быть подключена RC-цепочка (рис. 22).

Рис. 22. Схема низковольтного преобразователя напряжения с применением RC-цепочки.

Схемы преобразователей по типу индуктивной или емкостной трех-точки

Еще один вид преобразователей представлен на рисунки 23 — 29. Их особенность — использование индуктивных накопителей энергии и схем, выполненных по типу «индуктивной» или «емкостной трех-точки» с барьерным режимом включения транзистора.

Генератор (рис. 23) работоспособен в диапазоне напряжений от 0,66 до 1,55 В. Для оптимизации режима работы требуется подбор номинала резистора R1. В качестве катушки индуктивности, как и во многих предыдущих схемах. использована катушка контура фильтра ПЧ индуктивностью 260 мкГн.

Рис. 23. Преобразователь напряжения для светодиода на одном транзисторе КТ315.

Так, при числе витков первичной обмотки п(1) равном 50...60 и числе витков вторичной л(II) — 12, устройство работоспособно в диапазоне питающих напряжений 260...440 мВ (соотношение числа витков 50 к 12), а при соотношении числа витков 60 к 12 — 260...415 мВ.

При использовании ферритового сердечника другого типа или размера это соотношение может нарушиться и быть иным. Полезно самостоятельно выполнить подобное исследование, а результаты для наглядности представить в виде графика.

Весьма интересным представляется использование туннельного диода в рассматриваемых генераторах (аналогичного приведенному на рис. 20), включенного вместо перехода эмиттер — база транзистора VT1.

Генератор (рис. 24) немногим отличается от предыдущего (рис. 23). Интересной его особенностью является то, что яркость свечения светодиода меняется с ростом напряжения питания (рис. 25).

Рис. 24. Преобразователь напряжения с меняющейся яркостью свечения светодиода.

Рис. 25. График зависимости яркости свечения светодиода от питающего генератор напряжения (для рисунка 24).

Причем максимум яркости достигается при 940 мВ. Преобразователь, показанный на рисунке 26, можно отнести к генераторам, выполненным по схеме «трехточки», причем светодиод выполняет роль одного из конденсаторов.

Трансформатор устройства выполнен на ферритовом кольце (1000HM) К10x6x2,5, причем его обмотки содержат приблизительно по 15...20 витков провода ПЭЛШО 0,18.

Рис. 26. Низковольтный преобразователь напряжения с генератором выполненном на основе трехточки.

Преобразователь (рис. 27) отличается от предыдущего точкой подключения светодиода. Зависимость яркости свечения светодиода от напряжения питания показана на рисунке 28: при повышении напряжения питания яркость вначале нарастает, затем резко снижается, после чего снова растет.

Рис. 27. Простой преобразователь напряжения для низковольтного питания светодиода АЛ307.

Рис. 28. Зависимость яркости свечения светодиода от напряжения питания.

Наиболее простой схемой преобразователей этого типа является схема, представленная на рисунке 29. Установление рабочей точки достигается подбором резистора R1.

Светодиод, как и в ряде предшествующих схем, одновременно играет роль конден сатора. В порядке эксперимента рекомендуется подключить па раллельно светодиоду конденсатор и подобрать его емкость.

Рис. 29. Очень простая схема низковольтного преобразователя напряжения на одном транзисторе.

В заключение

В качестве общего замечания по налаживанию схем, представленных выше, следует отметить, что напряжение питания всех рассмотренных устройств во избежание повреждения светодиодов не должно (за редким исключением) превышать значения 1.6...1.7 В.

Литература: Шустов М.А. Практическая схемотехника (Книга 1).


Делаем фонарик на светодиодах своими руками

Светодиодный фонарик с 3-х вольтовым конвертором для светодиода 0.3-1.5V 0.3-1.5 V LED FlashLight

Обычно, для работы синего или белого светодиода требуется 3 - 3,5v, данная схема позволяет запитать синий или белый светодиод низким напряжением от одной пальчиковой батарейки. Normally, if you want to light up a blue or white LED you need to provide it with 3 - 3.5 V, like from a 3 V lithium coin cell.

Детали:
Светодиод
Ферритовое кольцо (диаметром ~10 мм)
Провод для намотки (20 см)
Резистор на 1кОм
N-P-N транзистор
Батарейка




Параметры используемого трансформатора:
Обмотка, идущая на светодиод, имеет ~45 витков, намотанных проводом 0.25мм.
Обмотка, идущая на базу транзистора, имеет ~30 витков провода 0.1мм.
Базовый резистор в этом случае имеет сопротивление около 2К.
Вместо R1 желательно поставить подстроечный резистор, и добиться тока через диод ~22мА, при свежей батарейке измерить его сопротивление, заменив потом его постоянным резистором полученного номинала.

Собранная схема обязана работать сразу.
Возможны только 2 причины, по которым схема работать не будет.
1. перепутаны концы обмотки.
2. слишком мало витков базовой обмотки.
Генерация исчезает, при количестве витков <15.



Куски проводов сложить вместе и намотать на кольцо.
Соединить между собой два конца разных проводов.
Схему можно расположить внутри подходящего корпуса.
Внедрение такой схемы в фонарь, работающий от 3V существенно продлевает, продолжительность его работы от одного комплекта батареек.











Вариант исполнения фонаря от одной батарейки 1,5в.





Транзистор и сопротивление помещаются внутрь ферритового кольца



Белый светодиод работает от севшей батарейки ААА


Вариант модернизации «фонарик – ручка»


Возбуждение изображенного на схеме блокинг-генератора достигается трансформаторной связью на Т1. Импульсы напряжения, возникающие в правой (по схеме) обмотке складываются с напряжением источника питания и поступают на светодиод VD1. Конечно, можно было бы исключить конденсатор и резистор в цепи базы транзистора, но тогда возможен выход из строя VT1 и VD1 при использовании фирменных батарей с низким внутренним сопротивлением. Резистор задает режим работы транзистора, а конденсатор пропускает ВЧ составляющую.

В схеме использовался транзистор КТ315 (как самый дешевый, но можно и любой другой с граничной частотой от 200 МГц), сверхяркий светодиод. Для изготовления трансформатора потребуется кольцо из феррита (ориентировочный размер 10х6х3 и проницаемостью около 1000 HH). Диаметр проволоки около 0,2-0,3 мм. На кольцо наматываются две катушки по 20 витков в каждой.
Если нет кольца, то можно использовать аналогичный по объему и материалу цилиндр. Только придется мотать уже 60-100 витков для каждой из катушек.
Важный момент : мотать катушки нужно в разные стороны.

Фотографии фонарика:
выключатель находится в кнопке «авторучки», а серый металлический цилиндр проводит ток.










По типоразмеру батарейки делаем цилиндр.



Его можно изготовить из бумаги, или использовать отрезок любой жесткой трубки.
Проделываем отверстия по краям цилиндра, обматываем его залуженным проводом, пропускаем в отверстия концы проволоки. Фиксируем оба конца, но оставляем с одного из концов кусок проводника: чтобы можно было подсоединить преобразователь к спирали.
Кольцо из феррита не влезло бы в фонарь, поэтому использовался цилиндр из аналогичного материала.



Цилиндр из катушки индуктивности от старого телевизора.
Первая катушка - около 60 витков.
Потом вторая, мотается в обратную сторону опять 60 или около того. Витки скрепляются клеем.

Собираем преобразователь:




Все располагается внутри нашего корпуса: Распаиваем транзистор, конденсатор резистор, подпаиваем спираль на цилиндре, и катушку. Ток в обмотках катушки должен идти в разные стороны! То есть если вы мотали все обмотки в одну сторону, то поменяйте местами выводы одной из них, иначе генерация не возникнет.

Получилось следующее:


Все вставляем вовнутрь, а в качестве боковых заглушек и контактов используем гайки.
К одной из гаек подпаиваем выводы катушки, а к другой эмиттер VT1. Приклеиваем. маркируем выводы: там, где у нас будет вывод от катушек ставим « - », где вывод от транзистора с катушкой ставим «+» (чтобы было все как в батарейке).

Теперь следует изготовить «ламподиод».


Внимание: на цоколе должен быть минус светодиода.

Сборка:

Как понятно из рисунка, преобразователь представляет собой «заменитель» второй батарейки. Но в отличие от нее, он имеет три точки контакта: с плюсом батарейки, с плюсом светодиода, и общим корпусом (через спираль).

Его местоположение в батарейном отсеке является определенным: он должен контактировать с плюсом светодиода.


Современный фонарик c режимом эксплуатации светодиода питанием постоянным стабилизированным током.


Схема стабилизатора тока работает следующим образом:
При подаче питания на схему транзисторы Т1 и Т2 заперты, Т3 открыт, потому как на его затвор подано отпирающее напряжение через резистор R3 . Благодаря наличию в цепи светодиода катушки индуктивности L1 ток нарастает плавно. По мере возрастания тока в цепи светодиода возрастает падение напряжения на цепочке R5- R4, как только оно достигнет примерно 0,4V, откроется транзистор Т2, а вслед за ним и Т1, который в свою очередь закроет токовый ключ Т3. Нарастание тока прекращается, в катушке индуктивности возникает ток самоиндукции, который через диод D1 начинает протекать через светодиод и цепочку резисторов R5- R4. Как только ток уменьшиться ниже определенного порога, транзисторы Т1 и Т2 закроются, Т3 -- откроется, что приведет к новому циклу накопления энергии в катушке индуктивности. В нормальном режиме колебательный процесс происходит на частоте порядка десятков килогерц.

О деталях :
Вместо транзистора IRF510 можно применить IRF530, или любой n-канальный полевой ключевой транзистор на ток более 3А и напряжение более 30 В.
Диод D1 должен быть обязательно с барьером Шоттки на ток более 1А, если поставить обычный даже высокочастотный типа КД212, КПД снизится до 75-80%.
Катушка индуктивности самодельная, мотают ее проводом не тоньше 0,6 мм, лучше - жгутом из нескольких более тонких проводов. Около 20-30 витков провода на броневой сердечник Б16-Б18 обязательно с немагнитным зазором 0,1-0,2 мм или близкий из феррита 2000НМ. При возможности толщину немагнитного зазора подбирают экспериментально по максимальному КПД устройства. Неплохие результаты можно получить с ферритами от импортных катушек индуктивности, устанавливаемых в импульсных блоках питания, а также в энергосберегающих лампах. Такие сердечники имеют вид катушки для ниток, не требуют каркаса и немагнитного зазора. Очень хорошо работают катушки на тороидальных сердечниках из прессованного железного порошка, которые можно найти в компьютерных блоках питания (на них намотаны катушки индуктивности выходных фильтров). Немагнитный зазор в таких сердечниках равномерно распределен в объеме благодаря технологии производства.
Эту же схему стабилизатора можно использовать и совместно с другими аккумуляторами и батареями гальванических элементов напряжением 9 или 12 вольт без какого-либо изменения схемы или номиналов элементов. Чем выше будет напряжение питания, тем меньший ток будет потреблять фонарик от источника, его КПД будет оставаться неизменным. Рабочий ток стабилизации задают резисторы R4 и R5.
При необходимости ток может быть увеличен до 1А без применения теплооотводов на деталях, только подбором сопротивления задающих резисторов.
Зарядное устройство для аккумулятора можно оставить «родное» или собрать по любой из известных схем или вообще применить внешнее для уменьшения веса фонаря.



Светодиодный фонарь из калькулятора Б3-30

В основу преобразователя взята схема калькулятора Б3-30, в импульсном источнике питания которого используется трансформатор толщиной всего 5 мм, имеющий две обмотки. Использование импульсного трансформатора от старого калькулятора позволило создать экономичный светодиодный фонарь.

В результате получилась очень простая схема.


Преобразователь напряжения выполнен по схеме однотактного генератора с индуктивной обратной связью на транзисторе VT1 и трансформаторе Т1. Импульсное напряжение с обмотки 1-2 (по принципиальной схеме калькулятора Б3-30) выпрямляется диодом VD1 и подается на сверхъяркий светодиод HL1. Конденсатор С3 фильтр. За основу конструкции взят фонарь китайского производства рассчитанного на установку двух элементов питания типа АА. Преобразователь монтируется на печатной плате из односторонне фольгированного стеклотекстолита толщиной 1,5 мм рис.2 размерами, заменяющими один элемент питания и вставляемой в фонарь вместо него. К торцу платы обозначенной знаком «+» припаивается контакт, изготовленный из двухсторонне фольгированного стеклотекстолита диаметром 15мм, обе стороны соединяются перемычкой и облуживаются припоем.
После установки на плату всех деталей торцевой контакт «+» и трансформатор Т1 заливаются термоклеем для увеличения прочности. Вариант компоновки фонаря показан на рис.3 и в конкретном случае зависит от типа используемого фонаря. В моем случае никакой доработки фонаря не потребовалось, отражатель имеет контактное кольцо, к которому подпаивается минусовой вывод печатной платы, а сама плата крепится к отражателю с помощью термоклея. Печатная плата в сборе с отражателем вставляется вместо одного элемента питания и зажимается крышкой.

В преобразователе напряжения использованы малогабаритные детали. Резисторы типа МЛТ-0,125, конденсаторы С1 и С3 импортные, высотой до 5 мм. Диод VD1 типа 1N5817 с барьером Шотки, при его отсутствии можно использовать любой выпрямительный диод, подходящий по параметрам, желательно германиевый ввиду более малого падения напряжения на нем. Правильно собранный преобразователь в налаживании не нуждается, если не перепутаны обмотки трансформатора, в противном случае поменяйте их местами. При отсутствии вышеуказанного трансформатора его можно изготовить самостоятельно. Намотка производится на ферритовое кольцо типоразмера К10*6*3 магнитной проницаемостью 1000-2000. Обе обмотки наматываются проводом ПЭВ2 диаметром от 0,31 до 0,44 мм. Первичная обмотка имеет 6 витков, вторичная 10 витков. После установки такого трансформатора на плату и проверки работоспособности его следует закрепить на ней с помощью термоклея.
Испытания фонаря с элементом питания типа АА представлены в таблице 1.
При испытании использовалась самая дешевая батарейка типа АА стоимостью всего 3 р. Начальное напряжение под нагрузкой составило 1,28 В. На выходе преобразователя напряжение, измеренное на сверхярком светодиоде 2,83 В. Марка светодиода неизвестна, диаметр 10 мм. Общий потребляемый ток 14 mА. Суммарное время работы фонаря составило 20 часов непрерывной работы.
При снижении напряжения на элементе питания ниже 1V яркость заметно падает.
Время, ч V батареи, В V преобр., В
0 1,28 2,83
2 1,22 2,83
4 1,21 2,83
6 1,20 2,83
8 1,18 2,83
10 1,18 2.83
12 1,16 2.82
14 1,12 2.81
16 1,11 2.81
18 1,11 2.81
20 1,10 2.80


Самодельный фонарик на светодиодах

Основа - фонарик «VARTA» с питанием от двух батареек типа АА:
Поскольку диоды имеют сильно нелинейную ВАХ необходимо оснастить фонарь схемой для работы на светодиоды, которая обеспечит постоянную яркость свечения по мере разряда батареи и сохранит работоспособность при возможно более низком напряжении питания.
Основа стабилизатора напряжения, это микромощный повышающий DC/DC конвертор MAX756.
По заявленным характеристикам он работает при снижении входного напряжения до 0.7В.

Схема включения - типовая:



Монтаж выполнен навесным способом.
Электролитические конденсаторы - танталовые ЧИП. Они имеют низкое последовательное сопротивление, что несколько улучшает КПД. Диод Шоттки - SM5818. Дроссели пришлось соединить два в параллель, т.к. не оказалось подходящего номинала. Конденсатор С2 - К10-17б. Светодиоды - сверхяркие белые L-53PWC «Kingbright».
Как видно на рисунке, вся схема легко уместилась в пустом пространстве светоизлучающего узла.

Выходное напряжение стабилизатора в данной схеме включения равно 3.3V. Поскольку падение напряжения на диодах в номинальном диапазоне токов (15-30мА) составляет около 3.1V, то лишние 200мV пришлось гасить на резисторе, включенном последовательно с выходом.
Кроме этого, небольшой последовательный резистор улучшает линейность нагрузки и стабильность схемы. Связано это с тем, что диод имеет отрицательный ТКС, и при разогреве его прямое падение напряжения уменьшается, что приводит к резкому росту тока через диод, при питании его от источника напряжения. Разравнивать токи через параллельно включенные диоды не пришлось - различия яркости на глаз не наблюдалось. Тем более, что диоды были одного типа и взяты из одной коробки.
Теперь о конструкции светоизлучателя. Как видно на фотографиях, светодиоды в схеме не запаяны намертво, а являются съемной частью конструкции.

Потрошится родная лампочка, и во фланце с 4-х сторон делаются 4 пропила (один там уже был). 4 светодиода располагаются симметрично по кругу. Плюсовые выводы (по схеме) припаиваются на цоколь возле пропилов, а минусовые вставляются изнутри в центральное отверстие цоколя, обрезаются и тоже пропаиваются. «Ламподиод», вставляется на место обычной лампочки накаливания.

Тестирование:
Стабилизация выходного напряжения (3.3V) продолжалась вплоть до снижения напряжения питания до ~1.2V. Ток нагрузки при этом составлял около 100мА (~ по 25мА на диод). Затем выходное напряжение начало плавно снижаться. Схема перешла в другой режим работы, при котором она уже не стабилизирует, а выдает на выход все, что может. В таком режиме она проработала до напряжения питания 0.5V! Выходное напряжение при этом упало до 2.7В, а ток со 100мА до 8мА.

Немного о КПД.
КПД схемы около 63% при свежих батарейках. Дело в том, что миниатюрные дроссели, использованные в схеме, имеют чрезвычайно высокое омическое сопротивление - около 1.5ом
Решение кольцо из µ-пермаллоя с проницаемостью порядка 50.
40 витков провода ПЭВ-0.25, в один слой - получилось около 80мкГ. Активное сопротивление около 0.2 Ом, а ток насыщения по расчетам - более 3А. Выходной и входной электролит меняем на 100мкФ, хотя без ущерба для КПД можно уменьшить и до 47мкФ.


Схема светодиодного фонаря на DC/DC конверторе фирмы Analog Device - ADP1110.



Стандартная типовая схема включения ADP1110.
Данная микросхема-конвертер, согласно спецификации фирмы-производителя, выпускается в 8 вариантах:

Модель Выходное напряжение
ADP1110AN Регулируемое
ADP1110AR Регулируемое
ADP1110AN-3.3 3.3 V
ADP1110AR-3.3 3.3 V
ADP1110AN-5 5 V
ADP1110AR-5 5 V
ADP1110AN-12 12 V
ADP1110AR-12 12 V

Микросхемы с индексами «N» и «R» отличаются только типом корпуса: R компактнее.
Если вы купили чип с индексом -3.3, можете пропускать следующий абзац и переходить к пункту «Детали».
Если нет - представляю вашему вниманию еще одну схему:



В ней добавлены две детали, позволяющие получить на выходе требуемые 3,3 вольта для питания светодиодов.
Схему можно улучшить, приняв во внимание, что для работы светодиодам нужен источник тока, а не напряжения. Изменения в схеме, что бы она выдавала 60мА (по 20 на каждый диод), а напряжение диоды нам выставят автоматически, те самые 3.3-3.9V.




резистор R1 служит для измерения тока. Преобразователь так устроен, что когда напряжение на выводе FB (Feed Back) превысит 0.22V, он закончит повышать напряжение и ток, значит номинал сопротивления R1 легко рассчитать R1 = 0.22В/Iн, в нашем случаи 3.6Ом. Такая схема помогает стабилизировать ток, и автоматически выбрать необходимое напряжение. К сожалению, на этом сопротивлении будет падать напряжение, что приведет к снижению КПД, однако, практика показала, что оно меньше чем превышение, которое мы выбрали в первом случаи. Я измерял выходное напряжение, и оно составило 3.4 - 3.6В. Параметры диодов в таком включении также должны быть по возможности одинаковыми, иначе суммарный ток в 60мА, распределился между ними не поровну, и мы опять, получим разную светимость.

Детали

1. Дроссель подойдет любой от 20 до 100 микрогенри с маленьким (меньше 0.4 Ома) сопротивлением. На схеме указано 47 мкГн. Его можно сделать самому - намотать около 40 витков провода ПЭВ-0.25 на кольце из µ-пермаллоя с проницаемостью порядка 50, типоразмера 10х4х5.
2. Диод Шоттки. 1N5818, 1N5819, 1N4148 или аналогичные. Analog Device НЕ РЕКОМЕНДУЕТ использовать 1N4001
3. Конденсаторы. 47-100 микрофарад на 6-10 вольт. Рекомендуется использовать танталовые.
4. Резисторы. Мощностью 0,125 ватта сопротивлением 2 Ома, возможно 300 ком и 2,2 ком.
5. Светодиоды. L-53PWC - 4 штуки.



Преобразователь напряжения для питания светодиода DFL-OSPW5111Р белого свечения с яркостью 30 Кд при токе 80 мА и шириной диаграммы направленности излучения около 12°.


Ток, потребляемый от батареи напряжением 2,41V, - 143мА; при этом через светодиод протекает ток около 70 мА при напряжении на нем 4,17 В. Преобразователь работает на частоте 13 кГц, электрический КПД составляет около 0,85.
Трансформатор Т1 намотан на кольцевом магнитопроводе типоразмера К10x6x3 из феррита 2000НМ.

Первичную и вторичную обмотки трансформатора наматывают одновременно (т. е. в четыре провода).
Первичная обмотка содержит - 2x41 витка провода ПЭВ-2 0,19,
Вторичная обмотка содержит - 2x44 витка провода ПЭВ-2 0,16.
После намотки выводы обмоток соединяют в соответствии со схемой.

Транзисторы КТ529А структуры p-n-p можно заменить на КТ530А структуры n-p-n, в этом случае необходимо изменить полярность подключения батареи GB1 и светодиода HL1.
Детали размещают на рефлекторе, используя навесной монтаж. Обратите внимание на то, чтобы был исключён контакт деталей с жестяной пластиной фонаря, подводящей «минус» батареи GB1. Транзисторы скрепляют между собой хомутом из тонкой латуни, который обеспечивает необходимый отвод тепла, и затем приклеивают к рефлектору. Светодиод размещают взамен лампы накаливания так, чтобы он выступал на 0,5... 1 мм из гнезда для её установки. Это улучшает отвод тепла от светодиода и упрощает его монтаж.
При первом включении питание от батареи подают через резистор сопротивлением 18...24 Ом чтобы не вывести из строя транзисторы при неправильном подключении выводов трансформатора Т1. Если светодиод не светит, необходимо поменять местами крайние выводы первичной или вторичной обмотки трансформатора. Если и это не приводит к успеху, проверяют исправность всех элементов и правильность монтажа.


Преобразователь напряжения для питания светодиодного фонаря промышленного образца.




Преобразователь напряжения для питания светодиодного фонаря
Схема взята из руководства фирмы Zetex по применению микросхем ZXSC310.
ZXSC310 - микросхема драйвера светодиодов.
FMMT 617 или FMMT 618.
Диод Шоттки - практически любой марки.
Конденсаторы C1 = 2.2 мкФ и C2 = 10 мкФ для поверхностного монтажа, 2.2 мкФ величина, рекомендованная производителем, а С2 можно поставить примерно от 1 до 10 мкФ

Катушка индуктивности 68 микрогенри на 0.4 А

Индуктивность и резистор устанавливают с одной стороны платы (где нет печати), все остальные детали - с другой. Единственную хитрость представляет изготовление резистора на 150 миллиом. Его можно сделать из железной проволоки 0.1 мм, которую можно добыть, расплетая тросик. Проволочку следует отжечь на зажигалке, тщательно протереть мелкой шкуркой, облудить концы и кусочек длиной около 3 см припаять в отверстия на плате. Далее в процессе настройки надо, измеряя ток через диоды, двигать проволочку, одновременно разогревая паяльником место ее припаивания к плате.

Таким образом, получается нечто вроде реостата. Добившись тока в 20 мА, паяльник убирают, а ненужный кусок проволочки обрезают. У автора вышла длина примерно 1 см.


Фонарик на источнике тока


Рис. 3. Фонарик на источнике тока, с автоматическим выравниванием тока в светодиодах, так что светодиоды могут быть c любым разбросом параметров (светодиод VD2 задает ток, который повторяют транзисторы VT2, VT3, таким образом, токи в ветвях будут одинаковыми)
Транзисторы конечно тоже должны быть одинаковыми, но разброс их параметров не так критичен, поэтому можно взять либо дискретные транзисторы, либо если сможете найти, три интегральных транзистора в одном корпусе, у них параметры максимально одинаковые. Проиграйтесь с размещением светодиодов, нужно подобрать пару светодиод-транзистор так что бы выходное напряжение было минимально, это повысит КПД.
Введение транзисторов выровняло яркость, однако они имеют сопротивление и на них падает напряжение, что вынуждает преобразователь повышать уровень выходного до 4В, для снижения падения напряжения на транзисторах можно предложить схему на рис.4, это модифицированное токовое зеркало, вместо опорного напряжения Uбэ=0.7В в схеме на рис.3 можно воспользоваться встроенным в преобразователем источником 0.22В, и поддерживать его в коллекторе VT1 при помощи операционика, также встроенным в преобразователь.



Рис. 4. Фонарик на источнике тока, с автоматическим выравниванием тока в светодиодах, и с улучшенным КПД

Т.к. выход операционника имеет тип «открытый коллектор» его необходимо «подтянуть» к питанию, что делает резистор R2. Сопротивления R3, R4 выполняют функции делителя напряжения в точке V2 на 2, таким образом операционник поддержит в точке V2 напряжение 0.22*2 = 0.44В, что меньше чем в предыдущем случаи на 0.3В. Брать делитель еще меньше, чтобы понизить напряжение в точке V2, нельзя т.к. биполярный транзистор имеет сопротивление Rкэ и при работе на нем будет падать напряжение Uкэ, чтобы транзистор правильно работал V2-V1 должно быть больше Uкэ, для нашего случая 0.22В вполне достаточно. Однако биполярные транзисторы можно заменить полевыми, в которых сопротивление сток исток гораздо меньше, это даст возможность уменьшить делитель, так чтобы, сделать разность V2-V1 совсем незначительной.

Дроссель. Дроссель нужно брать с минимальным сопротивлением, особое внимание следует уделить максимальному допустимому току он должен быть порядка 400 -1000 мА.
Номинал не играет такой роли как максимальный ток, поэтому Analog Devices рекомендует, что-то между 33 и 180мкГн. В данном случаи, теоретически, если не обращать внимание на габариты, то чем больше индуктивность, тем лучше по всем показателем. Однако на практике это не совсем так, т.к. мы имеем не идеальную катушку, она имеет активное сопротивление и не линейна, кроме того, ключевой транзистор при низких напряжениях уже не выдаст 1.5А. Поэтому лучше попробовать несколько катушек разного типа, конструкции и разного номинала, что бы выбрать катушку, при которой самый высокий КПД, и самое маленькое минимальное входное напряжение, т.е. катушку, с которой фонарик будет светиться максимально долго.

Конденсаторы.
C1 может быть любым. С2 лучше взять танталовым т.к. у него маленькое сопротивление это повышает КПД.

Диод Шотки.
Любой на ток до 1А, желательно с минимальным сопротивлением и минимальным падением напряжения.

Транзисторы.
Любые с током коллектора до 30 мА, коэф. усиления тока порядка 80 с частотой до 100Мгц, КТ318 подойдет.

Светодиоды.
Можно белые NSPW500BS со свечением в 8000мКд от Power Light Systems .

Преобразователь напряжения
ADP1110, или его замену ADP1073, для его использования схему на рис.3 нужно будет изменить, взять дроссель 760мкГ, а R1 = 0.212/60мА = 3.5Ом.


Фонарь на ADP3000-ADJ

Параметры:
Питание 2.8 - 10 В, КПД ок. 75%, два режима яркости - полный и половина.
Ток через диоды 27 мА, в режиме половинной яркости - 13 мА.
В схеме для получения высокого КПД желательно использовать чип-компоненты.
Правильно собранная схема в настройке не нуждается.
Недостатком схемы является высокое (1,25V) напряжение на входе FB (вывод 8).
В настоящее время выпускаются DC/DC конвертеры с напряжением FB около 0,3V, в частности, фирмы Maxim, на которых реально достичь КПД выше 85%.


Схема фонаря на Кр1446ПН1.




Резисторы R1 и R2 - датчик тока. Операционный усилитель U2B - усиливает напряжение, снимаемое с датчика тока. Коэффициент усиления = R4 / R3 + 1 и составляет примерно 19. Требуется такой коэффициент усиления, чтобы при токе через резисторы R1 и R2 60 мА напряжение на выходе открыло транзистор Q1. Изменяя эти резисторы, можно устанавливать другие значения тока стабилизации.
В принципе операционный усилитель можно и не ставить. Просто вместо R1 и R2 ставится один резистор 10 Ом, с него сигнал через резистор 1кОм подаётся на базу транзистора и всё. Но. Это приведёт к уменьшению КПД. На резисторе 10 Ом при токе 60 мА напрасно рассеивается 0.6 Вольта - 36 мВт. В случае применения операционного усилителя потери составят:
на резисторе 0.5 Ома при токе 60 мА = 1.8 мВт + потребление самого ОУ 0.02 мА пусть при 4-х Вольтах = 0.08 мВт
= 1.88 мВт - существенно меньше, чем 36 мВт.

О компонентах.

На месте КР1446УД2 может работать любой малопотребляющий ОУ с низким минимальным значением напряжения питания, лучше подошёл бы OP193FS, но он достаточно дорогой. Транзистор в корпусе SOT23. Полярный конденсатор поменьше - типа SS на 10 Вольт. Индуктивность CW68 100мкГн на ток 710 мА. Хотя ток отсечки у преобразователя 1 А, она работает нормально. С ней получился наилучший КПД. Светодиоды я подбирал по наиболее одинаковому падению напряжения при токе 20 мА. Собран фонарик в корпусе для двух батарей AA. Место под батареи я укоротил под размер батарей AAA, а в освободившемся пространстве навесным монтажом собрал эту схему. Хорошо подойдёт корпус для трёх батарей AA. Ставить нужно будет только две, а на месте третьей разместить схему.

КПД получившегося устройства.
Входные U I P Выходные U I P КПД
Вольт мА мВт Вольт мА мВт %
3.03 90 273 3.53 62 219 80
1.78 180 320 3.53 62 219 68
1.28 290 371 3.53 62 219 59

Замена лампочки фонарика “Жучёк” на модуль фирмы Luxeon Lumiled LXHL - NW 98.
Получаем ослепительно яркий фонарик, с очень легким жимом (по сравнению с лампочкой).


Схема переделки и параметры модуля.

Преобразователи StepUP DC-DC конверторы ADP1110 фирма Analog devices.




Питание: 1 или 2 батарейки 1,5в работоспособность сохраняется до Uвход.=0,9в
Потребление:
*при разомкнутом переключателе S1 = 300mA
*при замкнутом переключателе S1 = 110mA


Светодиодный электронный фонарь
С питанием всего от одной пальчи­ковой батареи типоразмера АА или AAA на микросхеме (КР1446ПН1), которая является полным аналогом микросхемы МАХ756 (МАХ731) и имеет практиче­ски идентичные характеристики.


За основу взят фо­нарь, в котором в качестве источника питания используются две паль­чиковые батарейки (аккумуляторы) типоразмера АА.
Плата преобразователя помещается в фонарь вместо второго эле­мента питания. С одного торца платы припаян контакт из луженой же­сти для питания схемы, а с другого - светодиод. На выводы светодиода надет кружок из той же жести. Диаметр кружка должен быть чуть боль­ше диаметра цоколя отражателя (на 0,2-0,5 мм), в который вставля­ется патрон. Один из выводов диода (минусовой) припаян к кружку, второй (плюсовой) проходит насквозь и изолирован кусочком трубоч­ки из ПВХ или фторопласта. Назначение кружка - двойное. Он обе­спечивает конструкции необходимую жесткость и одновременно слу­жит для замыкания минусового контакта схемы. Из фонаря заранее удаляют лампу с патроном и помещают вместо нее схему со светодиодом. Выводы светодиода перед установкой на плату укорачивают та­ким образом, чтобы обеспечивалась плотная, без люфта, посадка «по месту». Обычно длина выводов (без учета пайки на плату) равна длине выступающей части полностью вкрученного цоколя лампы.
Схема соединения платы и аккумулятора приведена на рис. 9.2.
Далее фонарь собирают и проверяют его работоспособность. Если схема собрана правильно, то никаких настроек не требуется.

В конструкции применены, стандарт­ные установочные элементы: конденсаторы типа К50-35, дроссели ЕС-24 индуктивностью 18-22 мкГн, светодиоды яркостью 5-10 кд диаметром 5 или 10 мм. Разумеется, возможно, применение и других светодиодов с напряжением питания 2,4-5 В. Схема имеет достаточный запас по мощности и позволяет пи­тать даже светодиоды с яркостью до 25 кд!

О некоторых результатах испытаний данной конструкции.
Доработанный таким образом фонарь проработал со «свежей» ба­тарейкой без перерыва, во включенном состоянии, более 20 часов! Для сравнения - тот же фонарь в «стандартной» комплектации (то есть с лампой и двумя «свежими» батарейками из той же партии) рабо­тал всего 4 часа.
И еще один важный момент. Если применять в данной конструкции перезаряжаемые аккумуляторы, то легко следить за состоянием уров­ня их разрядки. Дело в том, что преобразователь на микросхеме КР1446ПН1 стабильно запускается при входном напряжении 0,8-0,9 В. И свечение светодиодов стабильно яркое, пока напряжение на аккуму­ляторе не достигло этого критического порога. Лампа гореть при таком напряжении, конечно, еще будет, но вряд ли можно говорить о ней как о реальном источнике света.

Рис. 9.2 Рис 9.3




Печатная плата устройства приведена на рис. 9.3, а расположение элементов - на рис. 9.4.


Включение и выключение фонаря одной кнопкой


Схема собрана на микросхеме D-триггера CD4013 и полевом транзисторе IRF630 в режиме "выкл." ток потребления схемы - практически 0. Для стабильной работы D-триггера на входе микросхемы подключен фильтр резистор и конденсатор их функция- устранение контактного дребезга. Не используемые выводы микросхемы лучше никуда не подключать. Микросхема работает от 2 до 12 вольт, в качестве силового ключа можно использовать любой мощный полевой транзистор, т.к. сопротивление сток-исток у полевого транзистора ничтожно мало и не нагружает выход микросхемы.

CD4013A в корпусе SO-14, аналог К561ТМ2, 564ТМ2

Простые схемы генератора.
Позволяют питать светодиод с напряжением загорания 2-3V от 1-1,5V. Короткие импульсы повышенного потенциала отпирают p-n переход. КПД конечно понижается, но это устройство позволяет "выжать" из автономного источника питания почти весь его ресурс.
Проволока 0,1 мм - 100-300 витков с отводом от середины, намотанные на тороидальное колечко.




Светодиодный фонарь с регулируемой яркостью и режимом "Маяк"

Питание микросхемы - генератора с регулируемой скважностью (К561ЛЕ5 или 564ЛЕ5) которая управляет электронным ключом, в предлагаемом устройстве осуществляется от повышающего преобразователя напряжения, что позволяет питать фонарь от одного гальванического элемента 1,5.
Преобразователь выполнен на транзисторах VT1, VT2 по схеме трансформаторного автогенератора с положительной обратной связью по току.
Схема генератора с регулируемой скважностью на упомянутой выше микросхеме К561ЛЕ5 немного изменена с целью улучшения линейности регулирования тока.
Минимальный потребляемый ток фонаря с шестью параллельно включенными суперяркими светодиодами L-53MWC фирмы Kingbnght белого свечения равен 2.3 мА Зависимость потребляемого тока от числа светодиодов - прямо пропорциональная.
Режим "Маяк", когда светодиоды с невысокой частотой ярко вспыхивают и затем гаснут, реализуется при установке регулятора яркости на максимум и повторном включении фонаря. Желаемую частоту световых вспышек регулируют подбором конденсатора СЗ.
Работоспособность фонаря сохраняется при понижении напряжения до 1.1v хотя при этом значительно уменьшается яркость
В качестве электронного ключа применен полевой транзистор с изолированным затвором КП501А (КР1014КТ1В). По цепи управления он хорошо согласуется с микросхемой К561ЛЕ5. Транзистор КП501А имеет следующие предельные параметры, напряжение сток-исток - 240 В; напряжение затвор-исток - 20 В. ток стока - 0.18 А; мощность - 0.5 Вт
Допустимо параллельное включение транзисторов желательно из одной партии. Возможная замена - КП504 с любым буквенным индексом. Для полевых транзисторов IRF540 напряжение питания микросхемы DD1. вырабатываемое преобразователем, должно быть повышено до 10 В
В фонаре с шестью параллельно включенными светодиодами L-53MWC потребляемый ток примерно равен 120 мА при подключении параллельно VT3 второго транзистора - 140 мА
Трансформатор Т1 намотан на ферритовом кольце 2000НМ К10- 6"4.5. Обмотки намотаны в два провода, причем конец первой обмотки соединяют с началом второй обмотки. Первичная обмотка содержит 2-10 витков, вторичная - 2*20 витков Диаметр провода - 0.37 мм. марка - ПЭВ-2. Дроссель намотан на таком же магнитопроводе без зазора тем же проводом в один слой, число витков - 38. Индуктивность дросселя 860 мкГн












Схема преобразователя для светодиода от 0,4 до 3V - работающая от одной батарейки AAA. Этот фонарь повышает входное напряжение до нужного простым конвертером DC-DC.






Выходное напряжение составляет приблизительно 7 вт (зависит от напряжения установленного диода LEDs).

Building the LED Head Lamp





Что касается трансформатора в конвертере DC-DC. Вы должны его сделать самостоятельно. Изображение показывает, как собрать трансформатор.



Ещё вариант преобразователей для светодиодов _http://belza.cz/ledlight/ledm.htm








Фонарь на свинцово-кислотном герметичном аккумуляторе с зарядным устройством .

Свинцово кислотные герметичные аккумуляторные батареи самые дешевые в настоящее время. Электролит в них находится в виде геля, поэтому аккумуляторы допускают работу в любом пространственном положении и не производят никаких вредных испарений. Им свойственна большая долговечность, если не допускать глубокого разряда. Теоретически они не боятся перезаряда, однако злоупотреблять этим не следует. Подзарядку аккумуляторных батарей можно производить в любое время, не дожидаясь их полной разрядки.
Свинцово-кислотные герметичные аккумуляторные батареи подходят для применения в переносных фонарях, используемых в домашнем хозяйстве, на дачных участках, на производстве.


Рис.1. Схема электрического фонаря

Электрическая принципиальная схема фонаря с зарядным устройством для 6-вольтового аккумулятора, позволяющая простым способом не допустить глубокий разряд аккумулятора и, таким образом, увеличить его срок службы, показана на рисунке. Он содержит заводской или самодельный трансформаторный блок питания и зарядно-коммутационное устройство, смонтированное в корпусе фонаря.
В авторском варианте в качестве трансформаторного блока применен стандартный блок, предназначенный для питания модемов. Выходное переменное напряжение блока 12 или 15 В, ток нагрузки – 1 А. Встречаются такие блоки и с встроенными выпрямителями. Они также подходят для этой цели.
Переменное напряжение с трансформаторного блока поступает на зарядно-коммутационное устройство, содержащее вилку для подключения зарядного устройства X2, диодный мостик VD1, стабилизатор тока (DA1, R1, HL1), аккумулятор GB, тумблер S1, кнопку экстренного включения S2, лампу накаливания HL2. Каждый раз при включении тумблера S1 напряжение аккумулятора поступает на реле К1, его контакты К1.1 замыкаются, подавая ток в базу транзистора VТ1. Транзистор включается, пропуская ток через лампу HL2. Выключают фонарь переключением тумблера S1 в первоначальное положение, в котором аккумулятор отключен от обмотки реле К1.
Допустимое напряжение разряда аккумулятора выбрано на уровне 4,5 В. Оно определяется напряжением включения реле К1. Изменять допустимое значение напряжения разряда можно с помощью резистора R2. С увеличением номинала резистора допустимое напряжение разряда увеличивается, и наоборот. Если напряжение аккумулятора ниже 4,5 В, то реле не включится, следовательно, не будет подано напряжение на базу транзистора VТ1, включающего лампу HL2. Это значит, что аккумулятор нуждается в зарядке. При напряжении 4,5 В освещенность, создаваемая фонарем, неплохая. В случае экстренной необходимости можно включить фонарь при пониженном напряжении кнопкой S2, при условии предварительного включения тумблера S1.
На вход зарядно-коммутационного устройства можно подавать и постоянное напряжение, не обращая внимание на полярность стыкуемых устройств.
Для перевода фонаря в режим заряда необходимо состыковать розетку Х1 трансформаторного блока с вилкой Х2, расположенной на корпусе фонаря, а затем включить вилку (на рисунке не показана) трансформаторного блока в сеть 220 В.
В приведенном варианте применен аккумулятор емкостью 4,2 Ач. Следовательно, его можно заряжать током 0,42 А. Заряд аккумулятора производится постоянным током. Стабилизатор тока содержит всего три детали: интегральный стабилизатор напряжения DA1 типа КР142ЕН5А либо импортный 7805, светодиод HL1 и резистор R1. Светодиод, кроме работы в стабилизаторе тока, выполняет также функцию индикатора режима заряда аккумулятора.
Настройка электрической схемы фонаря сводится к регулировке тока заряда аккумулятора. Зарядный ток (в амперах) обычно выбирают в десять раз меньше численного значения емкости аккумулятора (в ампер-часах).
Для настройки лучше всего собрать схему стабилизатора тока отдельно. Вместо аккумуляторной нагрузки к точке соединения катода светодиода и резистора R1 подключить амперметр на ток 2…5 А. Подбором резистора R1 установить по амперметру вычисленный ток заряда.
Реле К1 – герконовое РЭС64, паспорт РС4.569.724. Лампа HL2 потребляет ток примерно 1А.
Транзистор КТ829 можно применить с любым буквенным индексом. Эти транзисторы являются составными и имеют высокий коэффициент усиления по току – 750. Это следует учитывать в случае замены.
В авторском варианте микросхема DA1 установлена на стандартном ребристом радиаторе размерами 40х50х30 мм. Резистор R1 состоит из двух последовательно соединенных проволочных резисторов мощностью 12 Вт.

Схемы:



РЕМОНТ СВЕТОДИОДНОГО ФОНАРИКА

Номиналы деталей (С, D, R)
C = 1 мкФ. R1 = 470 кОм. R2 = 22 кОм.
1Д, 2Д - КД105А (допустимое напряжение 400V предельный ток 300 mA.)
Обеспечивает:
зарядный ток = 65 - 70mA.
напряжение = 3,6V.











LED-Treiber PR4401 SOT23






Здесь можно посмотреть к чему привёли результаты эксперимента.

Предложенная Вашему вниманию схема, была использована для питания светодиодного фонарика, подзарядки мобильного телефона от двух металлгидритных аккумуляторов, при создании микроконтроллерного устройства, радиомикрофона. В каждом случае работа схемы была безупречной. Список, где можно использовать MAX1674 можно ещё долго продолжать.


Самый простой способ получить более-менее стабильный ток через светодиод - включить его в цепь нестабилизированного питания через резистор. Надо учитывать, что питающее напряжение должно быть как минимум в два раза больше рабочего напряжения светодиода. Ток через светодиод рассчитывается по формуле:
I led = (Uмакс.пит - U раб. диода) : R1

Эта схема чрезвычайно проста и во многих случаях является оправданной, но применять ее следует там, где нет нужды экономить электричество, и нет высоких требований к надежности.
Более стабильные схемы, - на основе линейных стабилизаторов:


В качестве стабилизаторов лучше выбирать регулируемые, или на фиксированное напряжение, но оно должно быть как можно ближе к напряжению на светодиоде или цепочке последовательно соединенных светодиодов.
Очень хорошо подходят стабилизаторы типа LM 317.
ный немецкий текст: iel war es, mit nur einer NiCd-Zelle (AAA, 250mAh) eine der neuen ultrahellen LEDs mit 5600mCd zu betreiben. Diese LEDs benötigen 3,6V/20mA. Ich habe Ihre Schaltung zunächst unverändert übernommen, als Induktivität hatte ich allerdings nur eine mit 1,4mH zur Hand. Die Schaltung lief auf Anhieb! Allerdings ließ die Leuchtstärke doch noch zu wünschen übrig. Mehr zufällig stellte ich fest, dass die LED extrem heller wurde, wenn ich ein Spannungsmessgerät parallel zur LED schaltete!??? Tatsächlich waren es nur die Messschnüre, bzw. deren Kapazität, die den Effekt bewirkten. Mit einem Oszilloskop konnte ich dann feststellen, dass in dem Moment die Frequenz stark anstieg. Hm, also habe ich den 100nF-Kondensator gegen einen 4,7nF Typ ausgetauscht und schon war die Helligkeit wie gewünscht. Anschließend habe ich dann nur noch durch Ausprobieren die beste Spule aus meiner Sammlung gesucht... Das beste Ergebnis hatte ich mit einem alten Sperrkreis für den 19KHz Pilotton (UKW), aus dem ich die Kreiskapazität entfernt habe. Und hier ist sie nun, die Mini-Taschenlampe:

Источники:
http://pro-radio.ru/
http://radiokot.ru/



Copyright © 2024 Строительный сайт.